If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+44x-192=0
a = 1; b = 44; c = -192;
Δ = b2-4ac
Δ = 442-4·1·(-192)
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2704}=52$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-52}{2*1}=\frac{-96}{2} =-48 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+52}{2*1}=\frac{8}{2} =4 $
| (2x-18)=(9x-16)+(3x+16) | | 2x-18=9x-16+3x+16 | | 2.6-9=x | | 4^x=1320 | | 2x-17=7x+16 | | 9x-1=3x-2+2x+1 | | (X+4)+86+x=180 | | 8(3x-2)=-136 | | 3(a+5)=20 | | 14+29m=48+22m | | X+1=4x-24 | | 14m+29=28+22 | | 1/3x=x-13 | | -4(x−12)+15=-1 | | 3(3x-5)=-6 | | -4(p−12)+15=-1 | | 13y-9y-15=61.04 | | 24x=-962 | | 17+17h=-19+19h | | 2a+11=-14a=59 | | 10p+20=60 | | 150m-100m+43,200=45,675-175m | | x-(-84)=-171 | | -2m-16=-20 | | x-(-84)=171 | | 9x=147 | | 150m-125m+38,200=40,400-175m | | 3x+x+(x+60)=180 | | X+x+2=68 | | 1/3y+3=-11 | | 5x(2x-1)-3x=5x+9 | | 17x-9=7x-59 |